- GaussianGenerator - Class in fr.lip6.jkernelmachines.util.generators
-
Class for generating toys subject to binary classification tasks, using
Gaussian distribution.
- GaussianGenerator() - Constructor for class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Default constructor: p = 1, sigma = 1.0 , dimension = 3.
- GaussianGenerator(int) - Constructor for class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Constructor specifying dimension.
- GaussianGenerator(int, float, double) - Constructor for class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Constructor with all parameters
- GaussianICKernel<S,T> - Class in fr.lip6.jkernelmachines.kernel
-
Not so useful based caching method for Gaussian kernels
- GaussianICKernel(IndexedCacheKernel<S, T>) - Constructor for class fr.lip6.jkernelmachines.kernel.GaussianICKernel
-
Constructor using underlying indexed kernel k, supposed to be Gaussian.
- GaussianKernel<T> - Class in fr.lip6.jkernelmachines.kernel
-
Base class for Gaussian Kernels in the form of k(x1, x2) = exp(-gamme * dist(x1, x2))
- GaussianKernel() - Constructor for class fr.lip6.jkernelmachines.kernel.GaussianKernel
-
- GaussianProductKernel<T> - Class in fr.lip6.jkernelmachines.kernel.adaptative
-
Major kernel computed as a weighted product of minor Gaussian kernels :
K = k_i^{w_i}
Computation of the kernel matrix is done by running a thread on sub matrices.
- GaussianProductKernel() - Constructor for class fr.lip6.jkernelmachines.kernel.adaptative.GaussianProductKernel
-
- GaussianProductKernel(Map<GaussianKernel<T>, Double>) - Constructor for class fr.lip6.jkernelmachines.kernel.adaptative.GaussianProductKernel
-
Sets the weights to h.
- GeneralizedDoubleGaussChi2 - Class in fr.lip6.jkernelmachines.kernel.typed
-
Gaussian Kernel on double[] that uses a custom weighted Chi2 distance.
- GeneralizedDoubleGaussChi2(double[]) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleGaussChi2
-
Constructor with the array of weighted for the distance
- GeneralizedDoubleGaussL2 - Class in fr.lip6.jkernelmachines.kernel.typed
-
Gaussian Kernel on double[] that uses a generalized L2 distance.
K(x, y) = exp( - sum_i{ gamma_i (x[i]-y[i])^2 })
- GeneralizedDoubleGaussL2(double[]) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleGaussL2
-
Constructor using an array of weighted for the generalized L2 distance
- GeneralizedDoubleLinear - Class in fr.lip6.jkernelmachines.kernel.typed
-
Generalized linear kernel on double[].
- GeneralizedDoubleLinear(double[][]) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleLinear
-
- GeneralizedDoubleTriangleL2 - Class in fr.lip6.jkernelmachines.kernel.typed
-
Triangular Kernel on double[] that uses a Generalized L2 distance.
- GeneralizedDoubleTriangleL2(double[]) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleTriangleL2
-
Constructor using an array of weighted for the generalized L2 distance
- generateList(int) - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Generate a list of toys, with half of them being in the first class.
- generateList(int, int) - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Generate a list of toys with specified number of positive samples, and
negatives samples.
- generateList(int) - Method in class fr.lip6.jkernelmachines.util.generators.MultiClassGaussianGenerator
-
Generates a list of Toys with specified number of samples per class
- getActiveSample(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.active.ActiveLearner
-
Method returning the best training sample in the list with respect to the active strategy
- getActiveSample(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.active.BestAL
-
- getActiveSample(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.active.MulticlassSimpleAL
-
- getActiveSample(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.active.RandomAL
-
- getActiveSample(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.active.SimpleAL
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
- getAlphas() - Method in interface fr.lip6.jkernelmachines.classifier.KernelSVM
-
Tells the weights of training samples
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Tells the array of support vector coefficients
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Tells support vectors coefficients in order of the training list
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- getAlphas() - Method in class fr.lip6.jkernelmachines.density.SMODensity
-
Tells the weights of the training samples
- getAverageScore() - Method in interface fr.lip6.jkernelmachines.evaluation.CrossValidation
-
Tells the average score of the test
- getAverageScore() - Method in class fr.lip6.jkernelmachines.evaluation.LeaveOneOutCrossValidation
-
- getAverageScore(String) - Method in interface fr.lip6.jkernelmachines.evaluation.MultipleEvaluatorCrossValidation
-
Tells the average score of the test for the given evaluator
- getAverageScore() - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
- getAverageScore(String) - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
- getAverageScore() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
- getB() - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Return the model biases
- getB() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells the bias b of (w*x -b)
- getB() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Get the bias of the classifier
- getB() - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Tells the bias term
- getB() - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
Tells the bias b of (w*x - b)
- getB() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells the bias b of (w*x -b)
- getBeta() - Method in class fr.lip6.jkernelmachines.evaluation.FScoreEvaluator
-
Get the beta value of the F-score
- getC() - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Returns the hyperparameter C for the hinge loss tradeoff
- getC() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells the C hyperparameter, if set, else return 0
- getC() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Tells the hyperparameter C
- getC() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Tells the C hyperparameter
- getC() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Tells the hyperparameter C
- getC() - Method in interface fr.lip6.jkernelmachines.classifier.KernelSVM
-
Tells the hyperparameter C
- getC() - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Tells the hyperparamter C
- getC() - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Tells the C hyperparameter
- getC() - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
- getC() - Method in class fr.lip6.jkernelmachines.classifier.NystromLSSVM
-
Get the C svm hyperparameter
- getC() - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- getC() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Tells the values of hyperparameter C
- getC() - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
- getC() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLight
-
Tells the hyperparameter C
- getC() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightSGDQN
-
Tells the hyperparameter C
- getC() - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
- getC() - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- getC() - Method in class fr.lip6.jkernelmachines.density.SimpleMKLDensity
-
- getC() - Method in class fr.lip6.jkernelmachines.density.SMODensity
-
Tells the hyperparameter C
- getCacheMatrix() - Method in class fr.lip6.jkernelmachines.kernel.IndexedCacheKernel
-
- getClassifier() - Method in class fr.lip6.jkernelmachines.active.ActiveLearner
-
Getter for the classifier
- getClassifier() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Returns the classifier used by this MKL algorithm
- getClassifier() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Returns the classifier used by this MKL algorithm
- getClassifier() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Tells the classifier
- getConfidence(T) - Method in interface fr.lip6.jkernelmachines.classifier.multiclass.MulticlassClassifier
-
Tells the confidence associated with the predicted class
- getConfidence(T) - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
- getConfidence(T) - Method in class fr.lip6.jkernelmachines.classifier.multiclass.OneAgainstAll
-
- getConfidences(T) - Method in interface fr.lip6.jkernelmachines.classifier.multiclass.MulticlassClassifier
-
Tells the confidences for all classes
- getConfidences(T) - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
- getConfidences(T) - Method in class fr.lip6.jkernelmachines.classifier.multiclass.OneAgainstAll
-
- getDimension() - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Tells the dimension of the toys
- getDistanceMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.GaussianKernel
-
Tells the distance matrix for a specified list of samples.
This is a threaded operation.
- getDualGap() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Tells the value of stopping criteria
- getDualObjective() - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- getE() - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Returns the number of epochs for training
- getE() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Get the number of epochs (one pass through the entire data-set)
- getE() - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Tells the number of epochs used for training
- getE() - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Tells the number of epochs of training (default 2)
- getE() - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
return the number of epochs
- getE() - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
Get the number of epochs to train the classifier
- getE() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightSGDQN
-
Tells the number of epochs used by internal SGDQN solver for training
- getE() - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- getE() - Method in class fr.lip6.jkernelmachines.type.ListSampleStream
-
Get the number of times the list is passed through
- getEpochs() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Tells the number of epochs this classifier uses for learning
- getEpochs() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Tells the number of epochs used for training this classifier
- getExampleWeights() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Tells weights of training samples
- getExampleWeights() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Tells the weights on examples
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.GaussianICKernel
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.GaussianKernel
-
Tells exponential coefficient
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleGaussChi1
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleGaussChi2
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleGaussL2
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleTriangleL2
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.FloatGaussChi2
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussChi2
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussL2
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.IntGaussChi1
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.IntGaussChi2
-
- getGamma() - Method in class fr.lip6.jkernelmachines.kernel.typed.IntGaussL2
-
- getGammas() - Method in class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleGaussChi2
-
- getGammas() - Method in class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleGaussL2
-
- getGammas() - Method in class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleTriangleL2
-
- getIteration() - Method in class fr.lip6.jkernelmachines.classifier.NystromLSSVM
-
Get the number of iterations used by the active learning strategy of the
Nystrom kernel
- getK() - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
return the number of anchor points
- getK() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells the number of samples used by this classifier to compute the subgradient
- getK() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells the number of samples used for sub-gradient calculation by internal Pegasos solver
- getK() - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Get the number of components in the mixture
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
- getKernel() - Method in interface fr.lip6.jkernelmachines.classifier.KernelSVM
-
Tells the current Kernel.
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Tells the kernel used by this classifier
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Returns the kernel used by this classifier
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
- getKernel() - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
- getKernel() - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- getKernel() - Method in class fr.lip6.jkernelmachines.kernel.SimpleCacheKernel
-
Returns the underlying kernel
- getKernel() - Method in class fr.lip6.jkernelmachines.projection.KernelPCA
-
Get the kernel use in the KernelPCA
- getKernelMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.GaussianProductKernel
-
- getKernelMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedProductKernel
-
- getKernelMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedSumKernel
-
- getKernelMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.WeightedSumKernel
-
- getKernelMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.Kernel
-
return the Gram Matrix of this kernel computed on given samples
- getKernelMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.SimpleCacheKernel
-
- getKernelMatrix(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.ThreadedKernel
-
- getKernelMatrixLine(T, List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedSumKernel
-
- getKernelMatrixLine(T, List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.WeightedSumKernel
-
- getKernelMatrixLine(T, List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.Kernel
-
returns a vector containing the similarity values of a given sample to a list of samples (i.e.
- getKernels() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Returns the list of kernels
- getKernels() - Method in interface fr.lip6.jkernelmachines.classifier.MKL
-
Gets an array of the kernels in the set, in the same order as
getKernelWeights()
- getKernels() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- getKernels() - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
Return the list of kernels used by this MKL algorithm
- getKernelWeightMap() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
- getKernelWeightMap() - Method in interface fr.lip6.jkernelmachines.classifier.MKL
-
Gets a mapping of pairs containing the kernels and
weights in the set.
- getKernelWeightMap() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- getKernelWeightMap() - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
- getKernelWeights() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Tells weights of kernels as array
- getKernelWeights() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
- getKernelWeights() - Method in interface fr.lip6.jkernelmachines.classifier.MKL
-
Gets an array containing the weights of the different kernels, in the
same order as getKernels()
- getKernelWeights() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- getKernelWeights() - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
tells the weights of the kernel combination
- getLambda() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells the learning rate of this classifier
- getLambda() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Get the regularization parameter lambda
- getLambda() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Returns the hyper-parameter lambda
- getLambda() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Tells the learning rate lambda
- getLambda() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells the learning rate lambda of internal Pegasos solver
- getList() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Tells the list of samples
- getListOfClassifiers() - Method in class fr.lip6.jkernelmachines.classifier.multiclass.OneAgainstAll
-
Returns the list of one against all classifiers used
- getListOfKernelWeights() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Tells weights of kernels
- getLoss() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Tells the loss function the classifier is currently using
- getLoss() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Tells the type of loss used by this classifier (default HINGELOSS)
- getLoss() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Tells the type of loss used by this classifier
- getMap() - Method in class fr.lip6.jkernelmachines.kernel.IndexedCacheKernel
-
- getMapOfClassifiers() - Method in class fr.lip6.jkernelmachines.classifier.multiclass.OneAgainstAll
-
Returns a map with class labels as keys and corresponding one against all
classifiers as values
- getMatrix(double[][]) - Method in class fr.lip6.jkernelmachines.threading.ThreadedMatrixOperator
-
get the parallelized matrix
- getMaxIteration() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Returns the maximum number of outer loop iterations
- getMaxIteration() - Method in class fr.lip6.jkernelmachines.density.SimpleMKLDensity
-
- getMean() - Method in class fr.lip6.jkernelmachines.projection.KernelPCA
-
Get the mean of the current Kernel
- getMKLNorm() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Return the norm used for the regularization on the kernels
- getMu() - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Gets the centers of each component of the mixture
- getMulticlassAlphas() - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
Returns the matrix of dual variables in the order [sample, class]
- getNbclasses() - Method in class fr.lip6.jkernelmachines.util.generators.MultiClassGaussianGenerator
-
Tells the number of classes
- getNbTest() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Tells the number of tests performed
- getNn() - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Returns the number of anchor points taken into account by the model
- getNormalizedKernelMatrix(ArrayList<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.kernel.Kernel
-
return the Gram Matrix of this kernel computed on given samples, with similarities of one element to itself normalized to one.
- getNum_cleaning() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Tells numerical cleaning threashold
- getNumplus() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLight
-
Tells the number of positive samples (used for transductive label estimation)
- getNumplus() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells the number of positive samples (used for transductive label estimation)
- getNumplus() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightSGDQN
-
Tells the number of positive samples (used for transductive label estimation)
- getObjective() - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- getP() - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Tells the distance between classes
- getP() - Method in class fr.lip6.jkernelmachines.util.generators.MultiClassGaussianGenerator
-
Tells the distance between classes
- getPercent() - Method in class fr.lip6.jkernelmachines.classifier.NystromLSSVM
-
Get the percentage of training set that is used to train the Nystrom
approximation kernel
- getPNorm() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Returns the p_norm parameters
- getProjectors() - Method in class fr.lip6.jkernelmachines.projection.KernelPCA
-
Get the projector coefficients obtained after learning
- getS() - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Tells the parameter s of the ramp loss (default -1)
- getScore() - Method in class fr.lip6.jkernelmachines.evaluation.AccuracyEvaluator
-
- getScore() - Method in class fr.lip6.jkernelmachines.evaluation.ApEvaluator
-
- getScore() - Method in interface fr.lip6.jkernelmachines.evaluation.Evaluator
-
Tells the score resulting of the evaluation
- getScore() - Method in class fr.lip6.jkernelmachines.evaluation.FScoreEvaluator
-
- getScore() - Method in class fr.lip6.jkernelmachines.evaluation.MulticlassAccuracyEvaluator
-
- getScore() - Method in class fr.lip6.jkernelmachines.evaluation.MultipleEvaluator
-
- getScore(String) - Method in class fr.lip6.jkernelmachines.evaluation.MultipleEvaluator
-
- getScore() - Method in class fr.lip6.jkernelmachines.evaluation.PrecisionEvaluator
-
- getScores() - Method in interface fr.lip6.jkernelmachines.evaluation.CrossValidation
-
Tells the scores of the tests, in order of evaluation
- getScores() - Method in class fr.lip6.jkernelmachines.evaluation.LeaveOneOutCrossValidation
-
- getScores(String) - Method in interface fr.lip6.jkernelmachines.evaluation.MultipleEvaluatorCrossValidation
-
Tells the scores of the tests, in order of evaluation for the given evaluator
- getScores() - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
- getScores(String) - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
- getScores() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
- getSeed() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
- getSigma() - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Gets the inverse covariance matrices of each component of the mixture
- getSigma() - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Tells the standard deviation of the toys
- getSigma() - Method in class fr.lip6.jkernelmachines.util.generators.MultiClassGaussianGenerator
-
Tells the standard deviation
- getStdDevScore() - Method in interface fr.lip6.jkernelmachines.evaluation.CrossValidation
-
Tells the standard deviation of the test
- getStdDevScore() - Method in class fr.lip6.jkernelmachines.evaluation.LeaveOneOutCrossValidation
-
- getStdDevScore(String) - Method in interface fr.lip6.jkernelmachines.evaluation.MultipleEvaluatorCrossValidation
-
Tells the standard deviation of the test for the given evaluator
- getStdDevScore() - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
- getStdDevScore(String) - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
- getStdDevScore() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
- getStopGap() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Returns the stopping criterion
- getStopGap() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Returns the stopping criterion
- getT() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells the maximum number of iteration of this classifier
- getT() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells the number of iteration for internal Pegasos algorithm
- getT0() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells the iteration offset
- getT0() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells the iterations offset of internal Pegasos solver
- getTau() - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Tells the numerical precision
- getThreadPoolExecutor() - Static method in class fr.lip6.jkernelmachines.threading.ThreadPoolServer
-
Tells the system wide ThreadPoolServer (Singleton pattern)
- getTrain() - Method in class fr.lip6.jkernelmachines.active.ActiveLearner
-
Return the list of training samples
- getTrainingSet() - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
Tells the ArrayList of TrainingSample used for training
- getTrainingWeights() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Deprecated.
- getTrainPercent() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Tells the percentage of samples used for training
- getVector(double[]) - Method in class fr.lip6.jkernelmachines.threading.ThreadedVectorOperator
-
get the parallelized vector
- getW() - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Return the model hyperplanes
- getW() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells the hyperplane array of this classifier
- getW() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Get the normal to the separating hyperplane
- getW() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Tells the arrays of coordinate of separating hyperplane
- getW() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Tells the array of coordinates of the hyperplane used by this classifier
- getW() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells the hyperplane array of this classifier
- getW() - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Gets the weights associated with each component of the mixture
- getWeight(GaussianKernel<T>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.GaussianProductKernel
-
gets the weights of kernel k
- getWeight(Kernel<T>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedProductKernel
-
gets the weights of kernel k
- getWeight(Kernel<T>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedSumKernel
-
gets the weights of kernel k
- getWeight(Kernel<T>) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.WeightedSumKernel
-
gets the weights of kernel k
- getWeights() - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Tells training samples and associated weights
- getWeights() - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Deprecated.
- getWeights() - Method in class fr.lip6.jkernelmachines.kernel.adaptative.GaussianProductKernel
-
get the list of kernels and associated weights.
- getWeights() - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedProductKernel
-
get the list of kernels and associated weights.
- getWeights() - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedSumKernel
-
get the list of kernels and associated weights.
- getWeights() - Method in class fr.lip6.jkernelmachines.kernel.adaptative.WeightedSumKernel
-
get the list of kernels and associated weights.
- getWhiteningCoefficients() - Method in class fr.lip6.jkernelmachines.projection.KernelPCA
-
Get the whitening coefficient
- givensRoti(double[][], double[][], int, int) - Static method in class fr.lip6.jkernelmachines.util.algebra.MatrixOperations
-
Performs the Givens rotation that nullifies component (i,j) of a matrix, accumulated on previous Rotation matrices
- GradMKL<T> - Class in fr.lip6.jkernelmachines.classifier
-
MKL algorithm using a naive gradient descent.
- GradMKL() - Constructor for class fr.lip6.jkernelmachines.classifier.GradMKL
-
- granularity - Static variable in class fr.lip6.jkernelmachines.util.algebra.ThreadedMatrixOperations
-
threshold under which single-threaded ops are used
- granularity - Static variable in class fr.lip6.jkernelmachines.util.algebra.ThreadedMatrixVectorOperations
-
- importFromFile(String) - Static method in class fr.lip6.jkernelmachines.io.ArffImporter
-
Read training samples from an Arff file.
- importFromFile(String, String, int) - Static method in class fr.lip6.jkernelmachines.io.CsvImporter
-
Importer with full settings.
- importFromFile(String, int) - Static method in class fr.lip6.jkernelmachines.io.CsvImporter
-
CSV import routine with delimiter set to ","
- importFromFile(String, String) - Static method in class fr.lip6.jkernelmachines.io.CsvImporter
-
CSV import routine with label position set to the last value
- importFromFile(String) - Static method in class fr.lip6.jkernelmachines.io.CsvImporter
-
CSV import routine with default parameters (separator is "," and the label is the last value)
- importFromFile(String) - Static method in class fr.lip6.jkernelmachines.io.LibSVMImporter
-
- IndexDoubleGaussChi2 - Class in fr.lip6.jkernelmachines.kernel.typed.index
-
Kernel on double[] that computes the Chi2 distance of a specified component j:
k(x, y) = (x[j]-y[j])*(x[j]-y[j])/(x[j]+y[j])
- IndexDoubleGaussChi2(int) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussChi2
-
Constructor specifying the component which is used
- IndexDoubleGaussL2 - Class in fr.lip6.jkernelmachines.kernel.typed.index
-
Kernel on double[] that computes the L2 distance of a specified component j:
k(x, y) = (x[j]-y[j])*(x[j]-y[j])
- IndexDoubleGaussL2(int) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussL2
-
Constructor specifying the component which is used
- IndexDoubleHPolynomial - Class in fr.lip6.jkernelmachines.kernel.typed.index
-
Kernel on double[] that performs the product of a specified component j to the power d:
k(x,y) = (0.5 + 0.5*x[j]*y[j])^d
- IndexDoubleHPolynomial(int, int) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleHPolynomial
-
Constructor specifying the component which is used
- IndexDoubleLinear - Class in fr.lip6.jkernelmachines.kernel.typed.index
-
Kernel on double[] that performs the product of a specified component j:
k(x,y) = x[j]*y[j]
- IndexDoubleLinear(int) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleLinear
-
Constructor specifying the component which is used
- IndexDoublePolynomial - Class in fr.lip6.jkernelmachines.kernel.typed.index
-
Kernel on double[] that performs the product of a specified component j to the power d:
k(x,y) = (x[j]*y[j])^d
- IndexDoublePolynomial(int, int) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoublePolynomial
-
Constructor specifying the component which is used
- IndexedCacheKernel<S,T> - Class in fr.lip6.jkernelmachines.kernel
-
Simple method of pair for caching a kernel function.
- IndexedCacheKernel(Kernel<T>, Map<S, T>) - Constructor for class fr.lip6.jkernelmachines.kernel.IndexedCacheKernel
-
Constructor using an underlying kernel and a map of
- IntGaussChi1 - Class in fr.lip6.jkernelmachines.kernel.typed
-
Gaussian Kernel on int[] that uses a Chi1 distance.
- IntGaussChi1() - Constructor for class fr.lip6.jkernelmachines.kernel.typed.IntGaussChi1
-
- IntGaussChi2 - Class in fr.lip6.jkernelmachines.kernel.typed
-
Gaussian Kernel on int[] that uses a Chi2 distance.
- IntGaussChi2() - Constructor for class fr.lip6.jkernelmachines.kernel.typed.IntGaussChi2
-
- IntGaussL2 - Class in fr.lip6.jkernelmachines.kernel.typed
-
Gaussian Kernel on int[] that uses a L2 distance.
- IntGaussL2() - Constructor for class fr.lip6.jkernelmachines.kernel.typed.IntGaussL2
-
- inv(double[][]) - Static method in class fr.lip6.jkernelmachines.util.algebra.ejml.EJMLMatrixOperations
-
computes the inverse of a matrix
- inv(double[][]) - Static method in class fr.lip6.jkernelmachines.util.algebra.MatrixOperations
-
Compute the inverse matrix
- is_tri(double[][]) - Static method in class fr.lip6.jkernelmachines.util.algebra.MatrixOperations
-
- isBalanced() - Method in interface fr.lip6.jkernelmachines.evaluation.BalancedCrossValidation
-
Returns true if the splits are balanced between positive and negative
- isBalanced() - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
Returns true if the splits are balanced between positive and negative
- isBalanced() - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
- isBias() - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Tells if this classifier uses a bias term
- isBias() - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Tells if this classifier uses a bias term
- isCACHED_KERNEL() - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- isCacheKernel() - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- isClasseBalanced() - Method in class fr.lip6.jkernelmachines.active.MulticlassSimpleAL
-
Tells is use a class balancing criterion
- isCyclic() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Is the algorithm doing epoch of ordered samples
- isHasBias() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Tells if this classifier is using a bias term
- isHasNorm() - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Tells if use a norm constraint
- isNormalize() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Tells if training datas are centered/reduced as preprocessing before learning
- isShuffle() - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Tells if samples are shuffled while learning
- isSquare(double[][]) - Static method in class fr.lip6.jkernelmachines.util.algebra.MatrixOperations
-
Tests if a matrix is square
- isSymmetric(double[][]) - Static method in class fr.lip6.jkernelmachines.util.algebra.MatrixOperations
-
Checks if a matrix is symmetric
- isTriDiagonal(double[][]) - Static method in class fr.lip6.jkernelmachines.util.algebra.MatrixOperations
-
- S3VMLight<T> - Class in fr.lip6.jkernelmachines.classifier.transductive
-
Transductive SVM using S3VMLight
- S3VMLight(Kernel<T>) - Constructor for class fr.lip6.jkernelmachines.classifier.transductive.S3VMLight
-
Constructor using specific kernel as input space similarity function
- S3VMLightPegasos - Class in fr.lip6.jkernelmachines.classifier.transductive
-
Fast linear transductive SVM using a combination of SVMLight and Pegasos algorithms.
- S3VMLightPegasos() - Constructor for class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Default constructor
- S3VMLightSGDQN - Class in fr.lip6.jkernelmachines.classifier.transductive
-
Fast Linear transductive SVM using a combination of SVMLight and SGDQN algorithms.
- S3VMLightSGDQN() - Constructor for class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightSGDQN
-
Default constructor
- sample - Variable in class fr.lip6.jkernelmachines.type.TrainingSample
-
- SDCA<T> - Class in fr.lip6.jkernelmachines.classifier
-
SDCA svm algorithm from Shalev-Shwartz.
- SDCA(Kernel<T>) - Constructor for class fr.lip6.jkernelmachines.classifier.SDCA
-
- SDCADensity<T> - Class in fr.lip6.jkernelmachines.density
-
One Class SVM estimation using Stochastic Dual Coordinate Ascent.
- SDCADensity(Kernel<T>) - Constructor for class fr.lip6.jkernelmachines.density.SDCADensity
-
- setAlphas(double[]) - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
Sets the samples weights
- setB(double) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets the bias term
- setB(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Set the bias of the classifier
- setB(double) - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Sets the bias term
- setBalanced(boolean) - Method in interface fr.lip6.jkernelmachines.evaluation.BalancedCrossValidation
-
Set class balancing strategy when computing the splits
- setBalanced(boolean) - Method in class fr.lip6.jkernelmachines.evaluation.NFoldCrossValidation
-
Set class balancing strategy when computing the splits
- setBalanced(boolean) - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
- setBeta(double) - Method in class fr.lip6.jkernelmachines.evaluation.FScoreEvaluator
-
Sets the beta value for the F-score
- setBias(boolean) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets if the classifier has a bias term
- setBias(boolean) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Sets the use of a bias term in this classifier
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Sets the hyperparameter C for the hinge loss tradeoff
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets C hyperparameter (automatically converted in lambda)
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Sets the hyperparameter C
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Set the C hyperparameter (automatically converted to learning rate lambda)
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Sets the hyperparameter C
- setC(double) - Method in interface fr.lip6.jkernelmachines.classifier.KernelSVM
-
Sets the hyperparameter C
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Sets the hyperparameter C
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Sets the C hyperparameter (default 1.0)
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.NystromLSSVM
-
Set the C svm hyperparameter
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Sets the value of the hyperparameter C
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLight
-
Sets the hyperparameter C
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightSGDQN
-
Sets the hyperparameter C
- setC(double) - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
- setC(double) - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- setC(double) - Method in class fr.lip6.jkernelmachines.density.SimpleMKLDensity
-
- setC(double) - Method in class fr.lip6.jkernelmachines.density.SMODensity
-
Sets the hyperparameter C
- setCACHED_KERNEL(boolean) - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- setCacheKernel(boolean) - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- setClasseBalanced(boolean) - Method in class fr.lip6.jkernelmachines.active.MulticlassSimpleAL
-
Sets the use of a criterion aiming at balanced classes
- setClassifier(OnlineClassifier<T>) - Method in class fr.lip6.jkernelmachines.active.ActiveLearner
-
Setter for the classifier
- setClassifier(OnlineClassifier<T>) - Method in class fr.lip6.jkernelmachines.active.MulticlassSimpleAL
-
- setClassifier(KernelSVM<T>) - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Sets the default training algorithm for the underlying svm calls (default LASVM).
- setClassifier(KernelSVM<T>) - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Sets the default training algorithm for the underlying svm calls (default LASVM).
- setClassifier(Classifier<T>) - Method in class fr.lip6.jkernelmachines.evaluation.AccuracyEvaluator
-
- setClassifier(Classifier<T>) - Method in class fr.lip6.jkernelmachines.evaluation.ApEvaluator
-
- setClassifier(Classifier<T>) - Method in interface fr.lip6.jkernelmachines.evaluation.Evaluator
-
Sets the classifier to use for evaluation
- setClassifier(Classifier<T>) - Method in class fr.lip6.jkernelmachines.evaluation.FScoreEvaluator
-
- setClassifier(Classifier<T>) - Method in class fr.lip6.jkernelmachines.evaluation.MulticlassAccuracyEvaluator
-
- setClassifier(Classifier<T>) - Method in class fr.lip6.jkernelmachines.evaluation.MultipleEvaluator
-
- setClassifier(Classifier<T>) - Method in class fr.lip6.jkernelmachines.evaluation.PrecisionEvaluator
-
- setClassifier(Classifier<T>) - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Sets the classifier
- setCyclic(boolean) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Set the order of the sample at each epoch
- setDebugLevel(int) - Static method in class fr.lip6.jkernelmachines.util.DebugPrinter
-
Set level of debug information to print
- setDimension(int) - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Sets the dimension of the toys
- setDualGap(double) - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Sets the value of the stopping criteria
- setE(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Sets the number of epochs for training
- setE(long) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Set the number of epochs (one pass through the entire data-set)
- setE(int) - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Sets the number of epochs used for training
- setE(long) - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Sets the number of epoch of training (default 2)
- setE(double) - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
Sets the number of epochs
- setE(int) - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
Set the number of epochs (going through all samples once) for the
training phase
- setE(double) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightSGDQN
-
Sets the number of epochs used for training by the internal SGDQN solver
- setE(int) - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- setE(int) - Method in class fr.lip6.jkernelmachines.type.ListSampleStream
-
Sets the number of times the list is passed through (number of epochs)
- setEpochs(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Sets the number of epochs this classifier uses for learning
- setEpochs(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Sets the number of epochs used for training this classifier
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.GaussianICKernel
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.GaussianKernel
-
Sets exponential coefficient.
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleGaussChi1
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleGaussChi2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleGaussL2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.DoubleTriangleL2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.FloatGaussChi2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleGaussChi2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussChi2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussL2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.IntGaussChi1
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.IntGaussChi2
-
- setGamma(double) - Method in class fr.lip6.jkernelmachines.kernel.typed.IntGaussL2
-
- setGammas(double[]) - Method in class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleGaussChi2
-
- setGammas(double[]) - Method in class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleGaussL2
-
- setGammas(double[]) - Method in class fr.lip6.jkernelmachines.kernel.typed.GeneralizedDoubleTriangleL2
-
- setHasBias(boolean) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Sets the use of a bias term
- setHasNorm(boolean) - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Sets use of norm constraint
- setIndex(int) - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussChi2
-
- setIndex(int) - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleGaussL2
-
- setIndex(int) - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleHPolynomial
-
- setIndex(int) - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoubleLinear
-
- setIndex(int) - Method in class fr.lip6.jkernelmachines.kernel.typed.index.IndexDoublePolynomial
-
- setIteration(int) - Method in class fr.lip6.jkernelmachines.classifier.NystromLSSVM
-
Set the number of iteration to use in the Nystrom approximation
- setK(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Sets the number of anchor points
- setK(int) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets the number of samples on which to compute the subgradient
- setK(int) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Sets the number of samples used for sub-gradient calculation by internal Pegasos solver
- setK(int) - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Sets the number of components in the mixture
- setKernel(Kernel<double[]>) - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
- setKernel(Kernel<T>) - Method in interface fr.lip6.jkernelmachines.classifier.KernelSVM
-
Sets the kernel to use as similarity measure
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.LaSVM
-
Sets the kernel used by this classifier
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Set the kernel to use
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.multiclass.MulticlassSDCA
-
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.SDCA
-
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.classifier.TSMKL
-
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.density.SDCADensity
-
- setKernel(Kernel<T>) - Method in class fr.lip6.jkernelmachines.projection.KernelPCA
-
Set the current Kernel
- setLambda(double) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets the learning rate lambda
- setLambda(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Set the regularization parameter lambda
- setLambda(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Sets the learning rate lambda
- setLambda(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Sets the learning rate lambda
- setLambda(double) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Sets the learning rate lambda of internal Pegasos solver
- setLines(int) - Static method in class fr.lip6.jkernelmachines.threading.ThreadedMatrixOperator
-
Sets the number of lines computed by each job
- setList(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Sets the list of samples
- setLoss(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Sets the loss function to use for next training
- setLoss(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Sets the type of loss used by this classifier (default HINGELOSS)
- setLoss(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Sets the type of loos used by this classifier
- setMaxIteration(int) - Method in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
Sets the maximum number of outer loop iterations
- setMaxIteration(int) - Method in class fr.lip6.jkernelmachines.density.SimpleMKLDensity
-
- setMKLNorm(double) - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Sets the norm used for kernel weights (real)
- setMu(double[][]) - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Sets the centers of each component of the mixture
- setName(String) - Method in class fr.lip6.jkernelmachines.kernel.Kernel
-
Set the name of this kernel
- setNbclasses(int) - Method in class fr.lip6.jkernelmachines.util.generators.MultiClassGaussianGenerator
-
Sets the number of classes
- setNbTest(int) - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Sets the number of tests to perfom
- setNn(int) - Method in class fr.lip6.jkernelmachines.classifier.DoubleLLSVM
-
Sets the number of anchor points taken into account by the model
- setNormalize(boolean) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Sets if training datas are centered/reduced as preprocessing before learning
- setNum_cleaning(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Sets numerical threshold
- setNumplus(int) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLight
-
Sets the number of positive samples (used for transductive label estimation)
- setNumplus(int) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Sets the number of positives samples (used for transductive label estimation)
- setNumplus(int) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightSGDQN
-
Sets the number of positives samples (used for transductive label estimation)
- setP(float) - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Sets the distance between classes
- setP(float) - Method in class fr.lip6.jkernelmachines.util.generators.MultiClassGaussianGenerator
-
Sets the distance between classes
- setPercent(double) - Method in class fr.lip6.jkernelmachines.classifier.NystromLSSVM
-
Set the percentage of training set to be used for training the Nystrom
approximation kernel
- setPNorm(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Sets norm constraint
- setS(double) - Method in class fr.lip6.jkernelmachines.classifier.LaSVMI
-
Sets the parameter s of the ramp loss (default -1)
- setSeed(long) - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
- setShuffle(boolean) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Sets if samples should be shuffled while learning
- setSigma(double[][][]) - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Sets the inverse covariance matrices of each component of the mixture
- setSigma(double) - Method in class fr.lip6.jkernelmachines.util.generators.GaussianGenerator
-
Set the standard deviation of the toys
- setSigma(double) - Method in class fr.lip6.jkernelmachines.util.generators.MultiClassGaussianGenerator
-
Sets the standard deviation
- setStopGap(double) - Method in class fr.lip6.jkernelmachines.classifier.DoubleQNPKL
-
Sets stopping criterion
- setStopGap(double) - Method in class fr.lip6.jkernelmachines.classifier.GradMKL
-
Sets stopping criterion threshold
- setT(int) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets the maximum number of iterations
- setT(int) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Sets the number of iteration for internal Pegasos algorithm
- setT0(double) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets the iteration offset
- setT0(double) - Method in class fr.lip6.jkernelmachines.classifier.transductive.S3VMLightPegasos
-
Sets the iterations offset of internal Pegasos solver
- setTestingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.AccuracyEvaluator
-
- setTestingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.ApEvaluator
-
- setTestingSet(List<TrainingSample<T>>) - Method in interface fr.lip6.jkernelmachines.evaluation.Evaluator
-
Sets the list of testing samples on which to evaluate the classifier
- setTestingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.FScoreEvaluator
-
- setTestingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.MulticlassAccuracyEvaluator
-
- setTestingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.MultipleEvaluator
-
- setTestingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.PrecisionEvaluator
-
- setTrain(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.active.ActiveLearner
-
Sets the list of training samples
- setTrain(ArrayList<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.classifier.SMOSVM
-
Sets the list of training samples
- setTrainingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.AccuracyEvaluator
-
- setTrainingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.ApEvaluator
-
- setTrainingSet(List<TrainingSample<T>>) - Method in interface fr.lip6.jkernelmachines.evaluation.Evaluator
-
Sets the list of training samples on which to train the classifier
- setTrainingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.FScoreEvaluator
-
- setTrainingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.MulticlassAccuracyEvaluator
-
- setTrainingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.MultipleEvaluator
-
- setTrainingSet(List<TrainingSample<T>>) - Method in class fr.lip6.jkernelmachines.evaluation.PrecisionEvaluator
-
- setTrainPercent(double) - Method in class fr.lip6.jkernelmachines.evaluation.RandomSplitCrossValidation
-
Sets the percentage of samples used for training
- setW(double[]) - Method in class fr.lip6.jkernelmachines.classifier.DoublePegasosSVM
-
Sets the hyperplane coordinates
- setW(double[]) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Set the normal to the hyperplane
- setW(double[]) - Method in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Sets the array of coordinate used by this classifier
- setW(double[]) - Method in class fr.lip6.jkernelmachines.density.DoubleGaussianMixtureModel
-
Sets the weights associated with each Component of the mixture
- setWeight(GaussianKernel<T>, Double) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.GaussianProductKernel
-
Sets the weight of kernel k
- setWeight(Kernel<T>, Double) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedProductKernel
-
Sets the weight of kernel k
- setWeight(Kernel<T>, Double) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.ThreadedSumKernel
-
Sets the weight of kernel k
- setWeight(Kernel<T>, Double) - Method in class fr.lip6.jkernelmachines.kernel.adaptative.WeightedSumKernel
-
Sets the weight of kernel k
- shutdownNow(ThreadPoolExecutor) - Static method in class fr.lip6.jkernelmachines.threading.ThreadPoolServer
-
Stops the server.
- SimpleAL<T> - Class in fr.lip6.jkernelmachines.active
-
Simple active learning strategy as presented in:
Support vector machine active learning with applications to text classification.
- SimpleAL(OnlineClassifier<T>, List<TrainingSample<T>>) - Constructor for class fr.lip6.jkernelmachines.active.SimpleAL
-
- SimpleCacheKernel<T> - Class in fr.lip6.jkernelmachines.kernel
-
Very simple caching method for any kernel.
- SimpleCacheKernel(Kernel<T>, List<TrainingSample<T>>) - Constructor for class fr.lip6.jkernelmachines.kernel.SimpleCacheKernel
-
Constructor using a kernel and a list of samples
- SimpleListKernel<S,T extends java.util.List<S>> - Class in fr.lip6.jkernelmachines.kernel.extra.bag
-
Default kernel on bags : sum all kernel values involving an element from B1 and an element from B2 between specified bounds.
- SimpleListKernel(Kernel<S>) - Constructor for class fr.lip6.jkernelmachines.kernel.extra.bag.SimpleListKernel
-
- SimpleMKL<T> - Class in fr.lip6.jkernelmachines.classifier
-
Implementation of the SimpleMKL solver.
Java conversion of the original matlab code.
- SimpleMKL() - Constructor for class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- SimpleMKLDensity<T> - Class in fr.lip6.jkernelmachines.density
-
Density estimation using an adapted version of SimpleMKL.
- SimpleMKLDensity() - Constructor for class fr.lip6.jkernelmachines.density.SimpleMKLDensity
-
default constructor
- SimpleSubListKernel<S,T extends java.util.List<S>> - Class in fr.lip6.jkernelmachines.kernel.extra.bag
-
Kernel on bags of same length.
Let B1 and B2 be bags of elements b1[i] and b2[i], let k(b1[i],b2[i]) be the minor kernel, then K(B1, B2) = sum_{i=n}^{N} k(b1[i],b2[i])
With n and N being the bounds of the sum.
- SimpleSubListKernel(int, int, Kernel<S>) - Constructor for class fr.lip6.jkernelmachines.kernel.extra.bag.SimpleSubListKernel
-
- SMODensity<T> - Class in fr.lip6.jkernelmachines.density
-
Density function based on SMO algorithm.
- SMODensity(Kernel<T>) - Constructor for class fr.lip6.jkernelmachines.density.SMODensity
-
Constructor using the specified kernel function for computing
similarities among samples
- SMOOTHHINGELOSS - Static variable in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Type of loss function using a smoothed hinge
- SMOOTHHINGELOSS - Static variable in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Type of loss function using a smoothed hinge
- SMOOTHHINGELOSS - Static variable in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Type of loss function using a smoothed hinge
- SMOSVM<T> - Class in fr.lip6.jkernelmachines.classifier
-
SVM classifier using SMO algorithm
- SMOSVM(Kernel<T>) - Constructor for class fr.lip6.jkernelmachines.classifier.SMOSVM
-
Constructor using the specified kernel as similarity measure between samples
- SQUAREDHINGELOSS - Static variable in class fr.lip6.jkernelmachines.classifier.DoubleSAG
-
Type of loss function using a squared hinge
- SQUAREDHINGELOSS - Static variable in class fr.lip6.jkernelmachines.classifier.DoubleSGD
-
Type of loss function using a squared hinge
- SQUAREDHINGELOSS - Static variable in class fr.lip6.jkernelmachines.classifier.DoubleSGDQN
-
Type of loss function using a squared hinge
- stddev(double[]) - Static method in class fr.lip6.jkernelmachines.util.ArraysUtils
-
Computes the standard deviation of an array
- StringNGram - Class in fr.lip6.jkernelmachines.kernel.typed
-
- StringNGram(int) - Constructor for class fr.lip6.jkernelmachines.kernel.typed.StringNGram
-
- SubListKernel<S,T extends java.util.List<S>> - Class in fr.lip6.jkernelmachines.kernel.extra.bag
-
Default kernel on bags : sum all kernel values involving an element from B1 and an element from B2 between specified bounds.
- SubListKernel(int, int, Kernel<S>) - Constructor for class fr.lip6.jkernelmachines.kernel.extra.bag.SubListKernel
-
- SubListKernel2<S,T extends java.util.List<S>> - Class in fr.lip6.jkernelmachines.kernel.extra.bag
-
Default kernel on bags : sum all kernel values involving an element from B1 and an element from B2 between specified bounds.
- SubListKernel2(Kernel<S>, int, int, int, int) - Constructor for class fr.lip6.jkernelmachines.kernel.extra.bag.SubListKernel2
-
- SubListMaxKernel<S,T extends java.util.List<S>> - Class in fr.lip6.jkernelmachines.kernel.extra.bag
-
max value of kernel between two bags
- SubListMaxKernel(int, int, Kernel<S>) - Constructor for class fr.lip6.jkernelmachines.kernel.extra.bag.SubListMaxKernel
-
- svm - Variable in class fr.lip6.jkernelmachines.classifier.SimpleMKL
-
- SVMExample - Class in fr.lip6.jkernelmachines.example
-
This class is a very simple introduction to the use of jkernelmachines.
- SVMExample() - Constructor for class fr.lip6.jkernelmachines.example.SVMExample
-