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Abstract

In this paper we propose a new non-linear classi-
fier based on a combination of locally linear clas-
sifiers. A well known optimization formulation
is given as we cast the problem in a ¢; Multiple
Kernel Learning (MKL) problem using many lo-
cally linear kernels. Since the number of such
kernels is huge, we provide a scalable generic
MKL training algorithm handling streaming ker-
nels. With respect to the inference time, the re-
sulting classifier fits the gap between high accu-
racy but slow non-linear classifiers (such as clas-
sical MKL) and fast but low accuracy linear clas-
sifiers.

1. Introduction

SVMs were shown to provide very accurate classifiers, and
are consequently used in a growing number of applica-
tions. SVM training algorithms and subsequent inference
efficiency can be separated in two groups, depending on
the kernel being linear or not. When dealing with linear
SVMs, very efficient training algorithms based on stochas-
tic gradient descent such as (Shalev-Shwartz et al., 2007,
Bordes et al., 2009; Roux et al., 2012) allow to deal with
large datasets in a short amount of time. The inference
time of linear SVMs is clearly their main advantage as it
can efficiently be optimized for modern computer architec-
ture. However, many classification problems are not lin-
early separable and consequently a non linear kernel is re-
quired.

Kernel SVMs also benefit from recent developments in
stochastic coordinate methods such as (Bordes et al., 2005;
Shalev-Shwartz & Zhang, 2013; 2014) and come now with
efficient training procedures. The main drawback of Ker-
nel SVMs is the inference time which is proportional to
the number of support vectors. This number has been ex-
perimentally shown to grow linearly with the size of the
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training set (Bordes et al., 2005). Most of the speed-up is
obtained by limiting the number of support vector (Dekel
& Singer, 2006). For example, in (Ertekin et al., 2011), the
authors proposed to ignore outliers to reduce the number of
support vectors, but the problem becomes non-convex and
the resulting classifier still has a high inference time.

With respect to the inference cost, a much more efficient
alternative is the use of almost linear classifiers such as
Locally Linear SVM (LLSVM) proposed in (Ladicky &
Torr, 2011). In LLSVM, a generative manifold learning al-
gorithm produces a partition the input space. An almost
piece-wise linear classifier concatenating linear classifier
of the different parts is then trained. The inference cost of
LLSVM is almost as fast as for linear SVMs, depending
only on the number of anchor points used in the manifold
learning. However, LLSVMs are dependent on the success
of the manifold learning algorithm that provides the anchor
points. Moreover, the parameter tuning of such algorithms,
mainly the number of anchor points and the coding func-
tion, is often costly and difficult to perform.

In this paper, we propose a new locally linear classifier
similar to LLSVM, but without the burden of the mani-
fold learning part while keeping very efficient inference
procedure. We first define a family of locally linear ker-
nels which are related to conformal kernels (Amari & Wu,
1999). We then used the Multiple Kernel Learning (MKL)
framework (Bach et al., 2004) to select a subset of the lo-
cally linear kernels. The ¢;-norm constraint on the kernel
combination leads to a limited number of selected kernels
and consequently leads to low inference cost. Our contri-
butions can be summed up as the following: 1) we propose
a new learning problem named Multiple Locally Linear
Kernel Machine (MLLKM) to obtain locally linear classi-
fiers more easily. 2) Since MLLKM is similar to /;-MKL,
we propose a new ¢1-MKL solver that can handle the high
number of kernels in MLLKM.

The remaining of this paper is organized as follows. In
the next section, we review existing works on locally linear
classifiers. In Section 3, we detail the concept of locally
linear kernels. Then, we present our proposed MLLKM
problem and show it is equivalent to solving ¢/;-MKL. In
the same section, we present a fast algorithm to solve ¢;-
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MKL problems on a budget and show several strategies to
automatically tune the parameters and drastically lower the
number of selected kernels. We present experiments in Sec-
tion 5 before we conclude.

2. Locally Linear Classifiers

Generally, a locality criterion in machine learning refers to
an adaptation of the model with respect to the localization
in the input space. For instance, the idea of locally lin-
ear classification is to consider a combination of different
linear predictors depending on some locality criterion per-
formed on the evaluated sample. Remark that although the
predictors are linear, the combination might not, and conse-
quently the resulting classifier can perform non-linear sep-
aration.

In Locally Linear SVM (Ladicky & Torr, 2011), a dictio-
nary learning algorithm is used to provide a set of anchor
points {x.} that describe the manifold of the data. This set
is usually obtained using a k-means clustering of a large
set of (unlabeled) samples, although more sophisticated
method can be used. Any sample x can then be coded by
the anchor points x. using local coordinate -y« (x) such
that 3, yx.(x) = Land x = > . (%)%, (Yu et al,
2009). Examples of such local coordinate coding include
Kernel Codebook (van Gemert et al., 2008) and Locality
constraint Linear Coding (Wang et al., 2010). These lo-
cal coordinate are then used to perform the combination of
local classifiers:

F(%) = 2, (%) TWx + 9, (x) T,

with W being the matrix which lines are the local hyper-
planes and b is a vector of local biases. To train W and b,
very efficient stochastic gradient descent algorithms can be
used on each local hyperplane weighted by the local coor-
dinate. Extension to multiclass problems can be achieve by
replacing the hinge loss with a multiclass loss as presented
in (Fornoni et al., 2013).

In (Gonen & Alpaydin, 2008), the authors proposed to
tackle the localization as a multiple kernel learning prob-
lem, using quasi-conformal transformation:

Ko (%i,%5) = Y 1 (%31 (%) K (3, %),

where 7, (+) is a locality function that aims at selecting the
right kernel among the K, depending on x; and x;. As in
LLSVM, the authors proposed each locality function 7,,, to
be associated with an anchor point v, :

B 6$p(<v'ma X> + UmO)
N (%) = >k exp((Vi, X) + viko)

The resulting MKL problem has then 2 sets of variables,
namely the dual SVM variables « associated with the train-
ing samples, and the anchor points v, that define the ker-
nels in the combination. The LMKL algorithm consists in
an alternate optimization scheme between « and v,,,, where
the v,,, are optimized using a gradient descent strategy. In
case of linear kernels, it is easy to see LLSVM and LMKL
lead to the same family of classifiers, with LMKL allow-
ing to tune the anchor points to the specific classification
task. However, since the LMKL objective function is non-
convex, a local optimum is found.

Both methods rely on a manifold learning procedure to
determine the anchor points. The main problem of such
method is that it often leads to a non-convex problem for
which no guarantee on the solution can be given, and that is
likely to have a high computational cost. Moreover, the pa-
rameter tuning of such solution (i.e., the number of anchor
points, the coding functions) is very difficult to perform. In
practice, it relies on an exploration of the parameters space
using cross-validation which is very costly.

In this paper, we thus propose to remove the burden of the
manifold learning part by casting the selection of the an-
chor points and the parameters in a MKL problem. To be
able to do that, we first define a family of locally linear
kernels in the next section.

3. Locally linear kernels

Let x1,%x2 € R? be two element of RY, and (x1,x5) =
X, X5 the standard dot product . Let the norm ||x| =
v/ (x,x) and the metric d(x1,%x2) = ||x1 — X2/ be the
standard (euclidean) norm and metric associated with (-, -).

We propose to explicitly build a Hilbert space X, as a sub-
space of the input space R locally defined around an arbi-
trarily chosen center x. € R?. To enforce locality, we cen-
ter the data on x, and then apply a norm scaling function
that tends to map the vectors to 0 when the norm becomes
to large. The mapping from R? to X, has the following
expression:

be RT - X (1)

x — hl9(x)(x — x.)

Where h(¢) is a conformal map rendering the vicinity of
the given center x.. We show in Table 1 several examples
of such mappings. By definition, X is a Hilbert space en-
dowed with the following explicit dot product k.(-, -):

ke(x1,%2) =(¢c(x1), c(x2)) 2,
_ (h(c> (x1)(x1 — xc)>T (h@ (x2)(x2 — Xc))

The properties of X, depends on the family of mappings
h chosen, which we consider to be a hyperparameter, and
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Figure 1. Example of synthetic data and corresponding X for different types of maps, with anchor point a.

Table 1. Examples of conformal maps used in this work, with
[t|+ = max(0,t).

name ‘ definition ‘ bounded ‘ smooth
peis) P - ] i
h§f> (x) e—lIx—xc|? B, v
MG | L =Alx -l | :
R (x) | 1= llx —x]?], v v

its subsequent parameters, namely {+,X.} in our exam-
ples. We show in Figure 1 examples of such mapping on
synthetic data. As we can see, many samples are mapped
to or close to 0. The effect is all the more visible using
bounded maps, since samples outside of the support of ¢,
are mapped exactly to 0. However, the local geometry of
the point cloud is preserved.

To allow for more sophisticated manipulations, we also

consider component wise local mappings, in the form of:

b R4 —» x )

x — h( (x) o (x — %)

where o is the entry wise (Hadamard) product. With a slight
abuse of notations, the mapping h : R? — R? now pro-
duces a vector rendering the vicinity of each component to
the anchor point. The explicit dot product corresponding to
X, is then the following:

ke(x1,%x2) =

(h(c)(xl) o (x1 — Xc))T (h(c)(XQ) o (x9 — Xc))

Using the examples given in Table 1 on each component
of input samples x produces the corresponding component
wise mappings. These mappings are also illustrated in Fig-
ure 1.

The main difference between the global and the compo-
nent wise mappings is that the latter makes the assumption
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the components can be considered independently, which is
the case if the features have been decorrelated (e.g., after a
Karhunen-Logve transform).

It is clear that using only one of such kernels (either global
or component wise) has less discriminatory capabilities
than the simple linear kernel. Indeed, since many features
are mapped to O independently of their class, it is very
likely that the classification problem becomes non linearly
separable after the transform. We thus consider the case
where several locally linear kernels are used and summed
into a single kernel:

X17X2

Zk X1,X2) 3)

The resulting space X is the concatenation of the X,. Prob-
lems that were not linearly separable in R (for example
the synthetic data of Figure 1) can be in &, provided a suf-
ficient number of locally linear kernels with the right range
of locality are used.

To choose these kernels, we consider the training set .4 of
samples {x;}; of R? to be used to train the classifier. We
propose to perform a linear combination consisting of a lo-
cally linear kernel for each sample:

= > Beke

x.€A

Xl 9 X2 Xl 9 X2 (4)

We are now left with the optimization of 3 so as to discard
irrelevant kernels from the combination. The next section
devises the resulting optimization problem and proposes an
algorithm to solve it.

4. Multiple Locally Linear Kernel Machines

Let A = {(xi,v:)}1<i<n be a training set of n training
samples x; € R? and their associated labels y; € {—1,1}.
The Multiple Locally Linear Kernel Machine (MLLKM) is
then the optimal predictor according to the following pri-
mal problem:

min = Z w3, + CZQ )

w,B,¢
s.t. VZ ylzmw ¢m Xz >1_<1
VYW C’L' 2 0
vm, Bm > 0

Remark this is corresponds to a standard ¢;-constraint
MKL problem with the slight difference that the number
of kernels is the same as the number of training samples.

On many occasions, £,-MKL with p > 1 are known to per-
form better than #; constraint (Kloft et al., 2009), however
the number of kernels in MLLKM is too high to allow for
non sparse combinations. In such case, the computational
benefit of having a locally linear classifier would be lost to
the very high number of linear predictors in the resulting
combination.

To recover classical formulation of ¢;-MKL, we consider
the following Lagrangian of the primal problem with S left
in the constraints:

L(w,B,¢ a, ) =

lewm||2+z C o hi—an) G
a ZO@' y’z 6m/w7Tn¢m(Xi) -1

s.t. Vm, Bm >0

Z/B’ln:l

The KKT stationary condition on w states that:

oL
=0=w}, — Zaiyi@¢m(xi)

owy,

Or equivalently:
wh, =Y ciyin/ B bm(x:)

Similarly, the stationary condition on ( states that:

oL
9Gi
Since o and A are dual variables, the dual feasibility condi-

tion imposes their positiveness, and in particular implies a
box constraint on o

:OZC*OQ*)%

VZ,OSOQSC

A dual formulation of problem (5) for w and ¢ variables is
then obtained by injecting these conditions into the original
formulation:

D(a75) =

= Zai
st. VYm,B, >0

This dual expression allows us to recover to the well known
min max formulation used for example in (Rakotoma-

ingﬁ(w,ﬂ,ga, )

Z Q;05Y; Y5 Z 5m

Xl,Xj



Multiple Locally Linear Kernel Machines

monjy et al., 2008):

mﬂinmgxz o — Zaz%yzyj Zﬁm
i

X,,X]

(6)
st. Vi,0<o; <C
Vm, Bm >0

Since the number of kernels is equal to the number of train-
ing samples, large datasets lead to optimization problem
intractable for current algorithms. In particular, most al-
gorithms suppose all kernel matrices can be computed and
stored in memory beforehand, which is clearly not the case
when considering even medium sized datasets (i.e., more
than 10k samples). Consequently, we present a new algo-
rithm called SequentialMKL, for solving large MKL prob-
lems with reduced memory footprint that is suitable for
training MLLKM.

4.1. Sequential MKL

The main idea in SequentialMKL is to consider a reduced
active set of kernels, solve the MKL problem for this re-
duced set, and then probe new kernels for inclusion in the
set. Solving the MKL problem with a reduced set of ac-
tive kernels can be done efficiently using existing solver
like (Sonnenburg et al., 2006; Chapelle & Rakotomamonjy,
2008) or (Rakotomamonjy et al., 2008). In our case,
we choose the reduced gradient approach of SimpleMKL
of (Rakotomamonjy et al., 2008) since it is closely related
to the inclusion criterion of new kernels. For the internal
SVM solver, we use a variant of SDCA (Shalev-Shwartz &
Zhang, 2013) presented in Algorithm 1. We keep track of
the outputs y of the classifier and check for an early bail
out criterion to improve the cost of each iteration. To de-
sign the criterion for inserting new kernels to the active set,
we consider a Lagrangian of the min max problem 6 where
the constraints of /3 are taken into account:

a, B, i, v) Zaz Zﬂmﬁm V<Zﬂm_ )
_*Zaz 7%%26771

Xl,XJ

Now, the stationary condition at optimum 5* imposes that

1
v =—pn — 5 Zafoé;yiyjkm(xmxj)
5]

Algorithm 1 SDCA for solving SVM
function SDCA(y, K, E, C)
y<0,a+0,e+0
repeat
L + random permutation of {1,...,n}
fori € Ldo
g 1—-yiyi
ifg=0o0r(g>0and a; =C)
or (g <0Oand a; =0)

then
skip ¢
end if
Opew — max(0, min(a; + g/ K;;, C))
0 <+ Unew — O
for j € {i,....,n} do
yj — yj + 6yjK
end for
end for
e+ e—+1
untile > F
return «
end function

Or, equivalently Vm, VI:
* 1 * Kk
Hop, + 5 ZO% G Yiyikm(Xi, X;) =

4,3
:u“l + = Z O[

Let us denote kj, a kernel with non-zero weight 3} at opti-
mum, then pj; = 0 by complementary slackness. In turns,
it means that VI # k,

y1y]kl szxj)

1 1
3 Z a7 oSy (Xi, x5) = + 5 Z a; afyiyiki(Xi, X;)

%] 5]

1
25 Z o g yyiki(xi, X;5)
]

)

since by dual feasibility all g7 > 0. The criterion thus
consists in finding a kernel of the open kernel set violat-
ing constraint (7) and adding it to the current active kernel
set. For numerical stability reasons, we compute the largest
%Zi,j o0y ko (X4, %) among non zero weight ker-
nels k,,,. Remark that kernels respecting Equation (7) have
zero weight and p,,, equals to the difference of gradients
with kj, meaning the KKT conditions are respected.

The full SequentialMKL algorithm is presented in Al-
gorithm 2. We alternate between optimizing the kernel
weights and search for new kernel to insert in the active
set, until no new kernel can be inserted. In practice, we
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(a) Gaussian map (b) Square map

(c) Component Gaussian map

(d) Component Square map

Figure 2. Example of synthetic data classification task. The true boundary is shown in plain black line, while the classifier boundary is
in dashed black line. The circles denote the support vectors, while the squares denote the support kernels.

Algorithm 2 SequentialMKL
function TRAIN({k), }, %, y, E, C)
S k1, O + {k‘m}\kl
B+ 1,a+0
repeat
K ¢ 5y s Bk
a <« SDCA(y, K, E,C)
term < true
g ¢ Mmaxg, es % Zi,j @i 0;YiYikm (i, §)
for k,, € O do
if % Zm‘ @;;yiY;km (i, j) > g then
term < false
S S+ km, O« O\kp,
end if
end for
B+ SolveMKL(S, 3, x,y, E, C)
for 3,, € 5 do
if 5,,, = 0 then
S+ S\km, O+ O+ kp,
end if
end for
until term
return o,
end function

found that inserting more than one kernel at a time do not
increase the time taken to update the weights, while signif-
icantly reducing the number of iterations of the outer loop.
Indeed, there is a tradeoff between inserting many kernels
and performing several passes over the entire kernel set that
can be roughly decided by the maximum number of Gram
matrices that can be cached in memory to allow fast train-
ing in the inner loop.

Moreover, SequentialMKL can very simply be extended to
an online variant where the kernels are streamed. In such
case, each time a new kernel is considered, it is probed for
insertion using the gradient criterion, and all weights are

consequently re-optimized (both « and /). To obtain the
true MKL solution, all previously discarded kernels have to
be probed after each new insertion, which can be done us-
ing a reprocess function akin to the one in LaSVM (Bordes
et al., 2005). When working on a budget, discarded kernels
can be forgotten, but then the solution given by Sequen-
tialMKL is only approximated unless many passes over the
whole kernel set are made. In the specific case of MLLKM,
a fully online algorithm can be efficiently designed, where
training samples are streamed and the corresponding ker-
nels are probed at the same time.

4.2. Inference computational cost

Like in many MKL problem, the trained classification func-
tion is the following:

@)= ai ) Beke(wi, ). ®)

For the quasi-conformal mapping, the expression of f can
be further developed using the explicit feature space:

f) =37 ai Y Behe(wihe(@)(wi—e) (@ =xe). ©)

Most of its computation can then be accelerated using this
explicit mapping:

fla) = he(@)(@ —z) T, (10)

with

we = Be Y ihe(ws)(zi — ). (11)

The same can be done for the component wise mappings.

Using this form, the inference cost is expected to be low
since the algorithm is set to have a sparsity pattern on 3
due to the ¢; norm constraint. Moreover, the evaluation
in this form independent of the number of support vectors,
just as for linear SVM. Remark that this inference cost is
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valid both in terms of number of operations and in memory
requirement. In case where the classifier has to fit a low
memory hardware at inference time, MLLKM has clearly
the advantage that only a few number of parameters have
to be stored compared with kernel SVM trained on a huge
training set.

4.3. Parameter selection

For the mapping function of Table 1, the  parameters have
to be tuned to take into account the scale of the data. To
avoid the burden of doing so by cross-validation, a sam-
pling over a reasonable segment (e.g., [0.01,10]) can be
made and all the corresponding locally linear kernels re-
lated to the training samples are considered in the initial
kernel set. Although it raises dramatically the total num-
ber of kernels, we found this solution to be more efficient
in training time than choosing the right parameter using
cross-validation. Furthermore, it allows for different pa-
rameters for different kernels, which betters renders the dif-
ferent scales of the data.

S. Experiments

We test our algorithms on 2 different datasets. The first
dataset is a synthetic binary classification task with highly
non-linear boundary between the classes. Then we com-
pare our algorithm performances on well known datasets
of the UCI repository.

5.1. Synthetic data

We first present experiments on a synthetic dataset contain-
ing two uniformly distributed classes, separated by a piece-
wise linear boundary. Figure 2 shows the output values of
the classifier as a heat map, the true boundary in continuous
line, the boundary of the classifier in dashed line, support
vectors in circles and active kernels in squares. C' was set
to 1000.

As we can see, we can achieve a curved boundary thanks to
the selected locally linear kernels. In particular, the square
and component-wise square maps have higher curvature
(infinite in the case of component wise mapping), which
may be due to the bounded support of such maps. The
component wise maps have less active kernels, although
they provide a comparable boundary. Remark the support
vectors are only shown to measure the extend of the sup-
port domain for the boundary, since they are not used in
the computation of the output. Using conformal map leads
to support vectors concentrated around the boundary, while
using component siwe maps leads to support vectors scat-
tered inside the maximum £, bounding box the the active
kernel set.

5.2. UCI dataset

We evaluated our MLLKM on several UCI datasets
(ionoshpere, sonar, heart and diabetes), following the pro-
cedure of (Rakotomamonjy et al., 2008) which is the most
used in MKL evaluations. For fairness of evaluation with
respect to the computational time, we implemented both
MLLKM and SequentialMKL using the JKernelMachines
library (Picard et al., 2013) which already contains sev-
eral algorithms against which we compared our work, i.e.,
LaSVM (Bordes et al., 2005), SAG (Roux et al., 2012),
LLSVM (Ladicky & Torr, 2011) and SimpleMKL (Rako-
tomamonjy et al., 2008). We performed 10 random split
of the data where 70% was kept for training, and measured
the average accuracy. C' was arbitrarily set to 100 for all
algorithms and all datasets.

When using MKL, we used the standard setup that con-
sists in adding Gaussian kernels for each component (10
bandwidths) as well as homogeneous and inhomogeneous
polynomial kernels of degrees up to 3. The total number of
kernels in such case is 19 times the dimension of the input
space. For LLSVM, we arbitrarily set the number of anchor
points to 32, while the bandwith of the Gaussian kernel for
LaSVM was set using crossvalidation.

We show in Table 2 the accuracy, the mean inference time
and the number of active kernels and support vectors for all
methods. The results are grouped into 3 categories: Our
method with varying kernel types, linear or locally linear
methods and non-linear methods. As we can see MLLKM
is in general close to non-linear methods in terms of accu-
racy, while having a much reduced inference time. Except
for the heart dataset, MLLKM always outperforms linear
methods by a fair margin while having a comparable infer-
ence time.

One interesting property of MLLKM is with respect to the
storage cost of the classifier, which is proportional to the
number of selected kernels. On the contrary, Kernel SVM
and MKL have to store the support vectors. As we can
see, the number of selected kernels in MLLKM is much
lower than the number of support vector in Kernel SVM
and MKL (by a factor of 5 to 10 in case of MKL), which
means the resulting classifier is easier to embed in a low
memory device even when trained on a large dataset.

6. Conclusion

In this paper, we presented a new classifier named Mul-
tiple Locally Linear Kernel Machine based on the com-
bination of locally linear kernel. The proposed approach
has several advantages: First it fits perfectly between high
accuracy kernel SVM that have a high inference cost and
lower accuracy linear SVM with a low inference cost. Sec-
ond, the proposed problem is equivalent to ¢;-MKL, which
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Table 2. Results on several UCI datasets. Methods are grouped into categories representing MLLKM with varying kernel type, linear

and locally linear methods and non-linear methods.

METHOD ACCURACY | INFERENCE TIME (MS) \ #KERNELS X #SUPPORT VECTORS
IONOSPHERE
MLLKM (GAUSSIAN) 94.0 + 2.3 1.0 £ 0.0 22.5+79 x 1
MLLKM (SQUARE) 92.9+2.8 2.4 4+3.0 2594+9.0 x 1
MLLKM (COMPONENT GAUSSIAN) | 91.7 £ 1.1 8.0+2.2 27.0£5.7 x 1
MLLKM (COMPONENT SQUARE) 91.4+24 1.9+0.8 2534+ 7.4 x 1
SAG 79.1+43 0.0+0.0 1 x1
LLSVM 87.3+2.2 1.5+1.4 32 x 1
LASVM (GAUSSIAN) 94.34+2.2 1.2+0.6 1 x53.3+43
SIMPLEMKL 95.1+2.2 18.9 + 8.1 9.5+4.4x159.7+13.1
SEQUENTIALMKL 93.3 +£3.1 55.2 +22.5 1594+ 8.1 x 141.8 +30.9
SONAR
MLLKM (GAUSSIAN) 81.0 +2.8 0.6 £ 0.5 176 £5.5 x 1
MLLKM (SQUARE) 80.2 £ 3.5 0.8+04 184+54x1
MLLKM (COMPONENT GAUSSIAN) | 77.8 +2.4 49+ 1.8 19.8+7.3 x 1
MLLKM (COMPONENT SQUARE) 80.2 +£3.0 1.0+ 0.4 23.1+£5.0x1
SAG 62.5+5.9 0.0 £ 0.0 1 x1
LLSVM 67.8+ 54 0.5+0.5 32 x 1
LASVM (GAUSSIAN) 79.0 £ 3.5 0.5+0.5 1 x73.6+4.1
SIMPLEMKL 84.6 +4.4 10.7+ 1.9 8.5+ 1.1 x 138.1 +£2.9
SEQUENTIALMKL 86.3+2.7 1544+ 12.0 11.24+9.2 x 124.5 £ 26.2
HEART
MLLKM (GAUSSIAN) 81.6 £3.0 0.6 0.5 26.0+8.3 x 1
MLLKM (SQUARE) 81.4+4.1 0.5+0.5 27.1+11.6 x 1
MLLKM (COMPONENT GAUSSIAN) | 82.2 +4.9 22404 27.3+6.3 x1
MLLKM (COMPONENT SQUARE) 81.1+2.8 0.8+0.6 26.8+6.9 x 1
SAG 83.0 +3.5 0.1+0.3 I x1
LLSVM 80.4 +4.1 0.3+0.5 32 x 1
LASVM (GAUSSIAN) 79.6 +2.4 0.5+0.5 1 x747+£5.2
SIMPLEMKL 80.2+2.9 10.6 = 2.2 7.4+09 x 163.2+5.7
SEQUENTIALMKL 80.0+5.3 12.1+2.5 8.0+1.9x164.9+19.0
DIABETES
MLLKM (GAUSSIAN) 75.3+3.2 0.9+0.5 240+54x1
MLLKM (SQUARE) 749+ 3.6 0.8+ 0.6 28.1 £13.0 x 1
MLLKM (COMPONENT GAUSSIAN) | 76.0 + 4.1 2.0+0.9 29.6 7.3 x 1
MLLKM (COMPONENT SQUARE) 72.6 +3.5 1.1+1.1 38.6 £11.3 x 1
SAG 66.1 £9.0 0.0+0.0 1 x1
LLSVM 74.2 +£ 2.7 2.3+2.0 32 x 1
LASVM (GAUSSIAN) 77.1+32 3.6t1.5 1 x141.94+7.4
SEQUENTIALMKL 69.5+ 2.8 55.0+118.6 7.1+9.7 x216.6 £21.7
SIMPLEMKL 69.5 + 4.1 8.9+1.0 33+£0.5x223.5+4.5

give some guarantees the training procedure always gives a
good solution.

To train the MLLKM, we proposed a generic ¢;-MKL al-
gorithm that is able to cope with a very high number of
kernels. The procedure is based on a reduced active set of

kernels and scans the remaining kernels for insertion. As
such, 2 extensions can easily be considered: An online ker-
nels MKL where kernels are streamed while the training
set is known, and a full online where both training sam-
ples and kernels are streamed. This later case is the one of
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an online MLLKM since the kernels are build around the
training samples.

Finally, our experiments show that MLLKM is able to ob-
tain accuracies comparable to non-linear classifier such as
MKL, while having an inference time comparable to linear
methods.
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A. ICML’15 reviews

In this section, we show the reviews received at ICML’ 15
where the paper was ultimately rejected.
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A.1. Reviewer 3

Overall Rating: Strong reject

Reviewer confidence: Reviewer is an expert

Detailed comments for the authors

Summary ——- The paper looks at the problem of accel-
erated prediction times with non-linear classifiers. To this
end the paper proposes a multiple kernel learning (MKL)
approach. The base kernels chosen are "locally linear" -
to understand these local kernels better, let me take an ex-
treme setting. Each local kernel is centered around an "an-
chor point" c. For points x,y within a radius 7 of c, the
linear kernel is preserved k.(z,y) = (z — ¢)'(y — ¢). If
either point x, y is outside this radius, k.(z,y) = 0.

Of course the paper uses smooth variations using confor-
mal maps to implement these kernels which reweigh the
local kernel according to the distance of the points from
the anchor point. Radial as well as coordinate-wise maps
are considered as well. Every training point is considered
a potential anchor point and a sparse combination of these
kernels is learnt using the SequentialMKL approach which
alternates between updating an active set of kernels and
choosing an appropriate combination of these active ker-
nels.

Quality —— The paper delves upon a slightly stale
methodology of "locally linear" methods. These are intu-
itive methods that are easy to explain but hard to implement
and even harder to scale to large problems.

Clarity ——- The paper is well written. Section 4 could do
with proof checking to remove spelling/grammatical mis-
takes.

Originality ——— The idea itself seems novel although
it effectively promotes similar classification characteristics
as other local methods. The novel part in the paper seems
to be its truly non-parametric approach to locality wherein
every training point is considered a potential anchor point.
Most such works implement locality by clustering the data
using k-means and then choosing the cluster centers as an-
chor points.

Significance The approach seems not very
promising practically as recent literature (please see ref-
erences below) already has several examples of methods
that outperform locally linear methods comprehensively in
terms of accuracy, as well as prediction time.

Comments - Since a primary goal of the paper seems
to be reduced prediction time, recent works in that direction
such as (Hsieh et al, 2014) and (Jose et al, 2013) need to
be referenced, especially since these methods handily out-
perform locally linear methods. - The experimental work
is a bit underwhelming - all prediction times are in mil-
liseconds. Datasets used are tiny at a time when other such

papers are performing experiments on the MNIST 8Million
dataset. Moreover the proposed method does not present a
strong case for choosing it over other methods. - Since this
is primarily an experimental piece of work with little theo-
retical results, a much more comprehensive comparison to
the state of the art would have to be performed to argue in
favor of the proposed method.

References

C.-J. Hsieh, S. Si, and I. S. Dhillon, Fast Prediction for
Large-Scale Kernel Machines, NIPS 2014.

C. Jose, P. Goyal, P. Aggrwal and M. Varma. Local deep
kernel learning for efficient non-linear SVM prediction,
ICML 2013.

[REQUIRED AFTER REBUTTAL]

I have read and considered the authors’ rebuttal. Yes
Post-rebuttal Comments. 1 would encourage the authors to
support their method with comprehensive experiments on
large scale datasets and comparisons to the state-of-the-art.

A.2. Reviewer 4

Overall Rating: Weak reject
Reviewer confidence: Reviewer is knowledgeable
Detailed comments for the authors

In combining multiple locally linear kernels, the idea is to
start with one candidate kernel centered on each training
point and let regularization pick the ones that are necessary
and remove the ones that are not; simiarly for the kernel
spread (y), a bunch of values are made available as candi-
dates for each center and the regularizer keeps the neces-
sary ones. This reads like a nice idea but ideally the positi-
ion (anchor) can be different from any of the training points
(that’s the advantage of methods like LLSVM and LMKL)
and similarly the ideal spread can be different from any of
the predefined candidates. In a high dim problem with a
small data set, limiting the anchors to the training data may
be restrictive.

Concerning the experimentation: The synthetic problem is
simple (and what can you say about the chosen v?) and
comparison is done on four small UCI data sets. The stdev
vaues on the latter seem large with respect to differences
between the means; are those differences statistically sig-
nificant? (Why are some results printed in boldface?)

And do not start the abstract with "In this paper"-it is re-
dundant.

[REQUIRED AFTER REBUTTAL]

I have read and considered the authors’ rebuttal. Yes
Post-rebuttal Comments. More comparison with existing
work is needed. My original review stands.
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A.3. Reviewer 6

Overall Rating: Weak reject
Reviewer confidence: Reviewer is an expert
Detailed comments for the authors

The goal of this paper is to improve traditional multiple ker-
nel learning so that to fit the gap of the inference/prediction
speed and accuracy between linear SVM and kernel SVM.
There are three main contributions: (1) use 11 regularized
multi-kernel learning objective aligned with locally linear
kernels; (2) speed up the optimization by considering a
reduced set of kernels and then probing new kernels af-
ter solving MKL in the reduced set; (3) new feature map-
ping. The experiments are conducted on synthetic and pub-
lic datasets showing the efficiency of the proposed method.
The paper is well written and organized.

I have several questions/suggestions for this paper:

1: It would be great to show the motivation for the new
feature mapping in eq(1) or explain the advantage of this
feature mapping over traditional kernels(Gaussian kernel
or linear kernel). In the experimental part, it would be in-
teresting to vary kernel functions in your MKL framework,
e.g., replace feature mapping in eq(l) with linear feature
mapping, etc., so that readers can believe that the proposed
new feature mapping can benefit the classification accu-
racy.

2: T guess I am still confused why this method is mem-
ory efficient. Would all the kernel matrices be computed
and stored in advance to perform kernels selection? I guess
the total memory requirement is still O(n?). Maybe au-
thors can provide more explanation over the memory re-
quirement.

3: There are . in the new feature mapping. Do you choose
them by kmeans clustering? Or z. needs to be learned
through optimization. Is ¢ = n (the number of data sam-
ples)? Will the prediction be faster if using kmeans centers
as x.?

4: Some comparisons with state-of-the-art fast inference
algorithms are missing: for example LDKL in [1] and DC-
Pred++ in [2]. Also as claimed in the paper, the method
is scalable, and it would be interesting to show some ex-
perimental results on large-scale datasets. All the datasets
tested in the paper have less than 1000 data points.

[1] C. Jose, P. Goyal, P. Aggrwal, and M. Varma, Local
deep kernel learning for efficient non-linear svm predic-
tion, in ICML, 2013. [2] C.-J. Hsieh, S. Si, and 1.S.Dhillon,
Fast Prediction for Large-Scale Kernel Machines, in NIPS,
2014.

5: If T understood correctly, the prediction/inference time
for the proposed algorithm is # of kernel * number of sup-

port vectors in each kernel. So the fourth column of Table 2
should correspond to the third column of Table 2. For iono-
sphere dataset, the MLLKM (Gaussian) is with the simi-
lar # of kernel * number of support vectors with MLLKM
(component gaussian), however the former takes only 1/8
inference time of the latter one. So authors might want to
clarify the difference.

[REQUIRED AFTER REBUTTAL]
I have read and considered the authors’ rebuttal. No

A.4. Meta-Reviewer 1

Overall Rating: Reject

Detailed Comments The reviewers are in agreement that
this paper is not yet ready for publication. All three re-
viewers consistently felt, both before the reviewer discus-
sion and afterwards, that the paper has major weaknesses
that need to be addressed before the paper can be accepted
for publication. Both Area Chairs agree with the reviewer
assessment. The rebuttal is unconvincing in that DCPred++
should have been cited and discussed in the paper even if
experimental comparisons could not have been carried out
by the time of submission. Furthermore, some compara-
tive results should have been presented in the rebuttal — it
should have been possible to run the proposed algorithm on
the DCPred++ data sets even if DCPred++ could not have
been implemented by the authors till then. Finally, com-
parisons should also have been performed to LDKL since
both the code and data sets are publically available. The au-
thors should take the reviewer feedback into account while
preparing future versions of the manuscript.



